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ABSTRACT 

In a recent paper a proof was given that for a perfect 

crystal of hydrogen atoms, described within a certain model, 

the free energy corresponding to localized one-electron wave- 

functions was less than that corresponding to spatially 

extended one-electron functions .  That proof, however depended 

on the assumption that the summand a. appearing in the partition 

function for the extended solutions monotonically increases with 

&   for I  ^ 0 .  The proof of this monotonicity is given here. 

Accepted for the Air Force 
Joseph R. Waterman, Lt. Col., USAF 
Chief, Lincoln Laboratory Project Office 
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1 .   INTRODUCTION 

In a recent paper  (to which we shall refer as I), a proof 

was given that for a perfect crystal of hydrogen atoms, described 

within a certain model, the free energy corresponding to local- 

ized one-electron functions was less than that corresponding to 

spatially extended one-electron functions [eg. (13.25), i.e. 

eg. (3.25) of I] .  These terms were defined in the framework of 

a new variational approximation in statistical mechanics, the 

2 
thermal single-determinant approximation,  and under certain 

specified limitations on the model discussed in detail in I.  This 

result was a central one in that paper,  and therefore rigor in 

the proof was strived for.  However, the proof given (Appendix A 

of I) depended on the assumption (made plausible there) that the 

summand a- appearing in the partition function for the extended 

solutions [egs. (IA.9), (IA.10)] monotonically increases with £ 

for &  > 0 .  The proof of this monotonicity is presented in this 

report . 

1. T. A. Kaplan and P. N. Argyres, Phys. Rev. B 1,   2457 (1970) . 

2. T. A. Kaplan, Bull. Am. Phys. Soc. _13, 386 (1968) and Solid 

State Research Report No. DDC-AD672961, Lincoln Laboratory, 

M.I.T. (1968:2) p. 53. 



2.   PROOF OF THE MONOTONICITY OF a 

For completeness we start with the definitions 

a = ( )  fcosh ^f) (2.1) 

gjs-^i (2.2) 

i is an integer.  (N is used here in place of 77 appearing in I.) 

N 
We shall prove a. ^ ap + i  for ° -^ 2> 4.  "j _ ! •  Thus putting 

and 

I- y (2.3) 

in g^ = h(y) (2.4) 

we  need to  show that  h(y)   V 0   for  0 ^  y < -^  - T=,   in  steps   of   1/N 

Equation   (IA.12)   gives 

h(y)  =  N in  cosh |+N|n   (1 +  tanh ^ tanh xy)   + in — ?^—j- 
+ N 

(2.5) 

1 +   2y + ^ 

But in  cosh ^ s  0,   and,   for  a s   0, N ^ 
2 

in    (1+a)   ^ a   - |- (2.6) 

and 



in (1+a) v< a (2.7) 

Thus 

h(y) >y  N(tanh \  tanh xy - \  tanh2 g) + in ^=g - N(1*2y)   (2.8) 

But 

tanh a ^ a  ,   a ^, 0 (2.9) 

so that (2.8) gives 

2 
h(y) >,  N tanh * tanh xy + in *=g _ |_ . N(1*2y) (2.10) 

Using (IA.27), then 

2    3 
h(y) >y  x tanh xy - in -£±|X _ |_ _ iL^ _ 1 (2.il) 

*        3N 

or 

h(y) ;>, 7(y) - 6 = hQ(y) (2.12) 

where 

7 (y) = x tanh xy - in ^X (2 .13) 

2    3 
e=-?N+2L-2-+M (2-14) 

The equation 7(y) = 0 arises in the thermal Hartree-Fock approxi- 

mation.  It is easy to see graphically (see Fig. 1) and one can 

show analytically that there are at most three roots y = 0, + y, 

for |y| < 1/2; also the condition for the occurrence of three 



roots is x > 2 .  So if we could drop &,   then we would know that 

h(y) > 0 for all y in the range 0 to y,  Furthermore, y turns out, 

for x as big as 100, to be extremely close to 1/2, so close that 

1   ^ N (-7 - y) « I* so we would then have completed the proof.  But we 

have 6 /   0 .  The functions x tanh xy and £n  yT5v are snown quali- 
2 

tatively in Fig. 1, which is drawn for x >  4. 

Our argument is as follows.  We will first show that h(y) > 0 

for y = -^  - TT, i.e. for & - •*  - 1 (note that for £  = N/2, i.e. 

y = 1/2, h (ij)   -   -  oo) ; that is, at the first integral step (in £) 

towards the left from y = 1/2, one has passed the first crossing 

of x tanh xy and £n  ^_*^ + £.  It is clear (from the figure) then 

that h(y) will remain positive as y decreases until y = y , (small 

and positive) is reached.  We will obtain an upper bound on y  of 

2/N.  Finally we will show that g  and g, are > 1 and this will 

N conclude the proof that a. < a. . for 0 v< £  < -j - 1. 

Putting y = 1/2 - 1/N into (2 .11), we have 

1 _ 1 
b(^ - -jj) >, x tanh x (-j - -jj) -in —j £ 

N 

tanh -TT -   tanh -^ , 

- x —*—h - in N(1 - J> - « 1  -  tanh -J tanh TT 

yy x(tanh ^  -  |)   -   in N  -   g (2.15) 



•• y 

y 2 

Fig.  1 



X        X 
For the last inequality we used 1 s tanh -~ tanh — V 0, 

tanh £ < £.  Clearly then N v* N 

h(-j - ±) > 0 for x > 200 and N < e   ^, but x /N « 1       (2.16) 

the range discussed below Eq. (IA.17) . 

We now find an upper bound to the other positive root, y , 

of h (y) - 0.  Put 

£n   1+2y +   fi = g(y) (2.17) 

so y  satisfies J o 

x tanh xyQ = g(yQ) (2.18) 

and is, by definition, the smallest positive root.  Now 

g(o) = g > 0, tanh xy = 0 at y = 0, and both tanh xy and g(y) 

monotonically increase with y.  Hence if we replace tanh xy by 

t (y) < tanh xy and replace g(y) by g(y) > g(y), then 

xE(yu) = g(yu) (2.19) 

where 

y > Y (2 .20) 

(The latter may be seen very simply by graphical means.) 

Using (IA.27), we will choose 

t(y) = xy - i x3y3 (2.21) 



Also 

- in (l-2y) ^ j^p, y ^ 0 (2.22) 

Proof:  f(x) = •—- +  in (1-x) ; then f (o) = 0 

f' (x) -  ^ > 0 for x > 0 

.*. f (x) ^ 0 for x > 0 

So, using in addition in (l+2y) < 2y, we can choose 

g(y) = 4y ^^ + e (2.23) 

Thus y  satisfies xt(y) = g(y), which can be written 

(x2-4+2£)y = (2x2-4)y2 + ^ x4y3 - | x4y4 + £ E K(y)        (2.24) 

Again:  the i.h.s. increases monotonically and is zero at y = 0, 

while h(o) = £ > 0, so that increasing the r.h.s., h(y), will 

increase the smallest positive root.  Clearly, for y < 1, 

H(y) X (2x2-4)y2 + i x4y2 + £ 

so that y  (actually bigger than the y  satisfying (2.24)) sat- 

isfies 

(2x2-4 + i x4)y2 - (x
2-4+2?)y + g = 0 (2.25) 

We want the root that -»• 0 as S -*• 0:  So 



(x2-4+2e) (i - VW) 

^ -    irrr-—i  4, <2 -26) 
2 (2x -4 + -^ x ) 

with 

4g (i x4 + 2x2-4) 2 
T =  i- ,  < 1 for x   200, F   -v «- « 1 (2 .27) 

(x -4+2f) N 

Also Vl-r > 1-r for 0 < r < 1, and x -4+28 > 0 for our parameter 

range, so that 

.  x2-4+2£  2£      1       _  u 
^u < -.1 4^ I 2 .. = -7 " 4 21 = yo 

(2 -28) 
2(-^x + 2x -4)   x   1 2 + ~2 

So 

10   4f   2x 
~2 +  ~~2        3N 

2 - Nyu =  > 0 for the range of interest   (2.29) 
1   4   2C 
1 " ~2  + ~2 x   x 

i.e . 

Ny^ < 2 (2.30) 

which is the desired upper bound on y . 
2  ° 

For gQ,  we use cosh x > 1 + *- and -^ < £n   (1+x) < x for 

x < 1, and find that 

8 



x2/2N 

g = e 
N in cosh | - £n   (1 + h 1 + x2/2N2 

^ e 

1 - ^ (1 + *  ) i ~2~ 
x 

so that g > 1 for x s 200 and xz/N « 1 o / 

Again 

2N* 

(2.31) 

g, = (cosh *-)N (1 + tanh
2 £)N | 

- 1 

2 + 2 

.  .   . x.N ...   6. 
> (cosh F)   (1 - -) 

> e 

x2/2N      6A 

1 + x2/2N2 " ^^N 

1 
N 

= e J      2N LN 

x > 1 for x yy  200, g- « 1 

(Actually, to a very good approximation, 

2    2 x.x   6 1 ,3x' 

gx = e 
2U + N - N  _N v_2~ = e (> 1 for x > 2,  which is the 

critical value in the THFA.) 
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